Experiments in Distributed Side-By-Side Software
Development

Prasun Dewan

Department of Computer Science
University of North Carolina
Chapel Hill, USA
dewan@unc.edu

Abstract—In distributed side-by-side software development, a
pair of distributed team members are assigned a single task and
allowed to (a) work concurrently on two different computers and
(b) see each others’ displays. They can control when they
communicate with each other, view each others’ actions, and
input concurrently. To understand how this control is exerted in
practice, we have performed experiments at two different
organizations, Microsoft Research and Tata Consultancy
Services, which involved about forty six person hours of
distributed side-by-side development. The experimental tasks
were typical of the kind carried out at these organizations. A mix
of qualitative, quantitative, and visualization analysis shows that
(a) distribution and conflicting changes are not an issue; (b)
developers use the unique capabilities provided by distributed
side-by-side software development; and (c) the exact usage
depends on several factors such as the collaboration task,
developers, and software-development abstraction and
environment.

Keywords-pair programming; conflicts; visual programming

L. INTRODUCTION

Complex software must be developed collaboratively.
However, Brooks[1] observed that adding more people to a
software team can result in a disproportionate increase in
coordination cost, thereby reducing the productivity of the
individual programmer. If the coordination cost is really an
issue, then distributing the team should further aggravate this
problem and radically co-locating it in a single war-room
should reduce it. Two independent studies have found that this
is indeed the case - the productivity of co-located teams was
higher than that of distributed teams[2]; and the productivity of
teams radically-co-located in a single “war-room” was greater
than that of co-located ones working from different
cubicles[3].

The above works have assumed that programmers are
assigned separate tasks, with no coupling between their
workspaces. This is not the case with pair programming,
wherein two developers work together on the same problem,
taking turns in providing input. Some studies of pair
programming claim that it offers not only faster task
completion times, but also, after taking into account the cost of
fixing bugs, better productivity[4, 5]; thus seemingly
contradicting the observation of Brooks, which as mentioned
above, did not consider workspace coupling. Another study [6]

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

Puneet Agrawal
Gautam Shroff
Tata Consultancy Services, India
puneet.a@tcs.com
gautam.shroff@tcs.com

b

Rajesh Hegde
Microsoft Research
Microsoft
Redmond, USA
rajesh.hegde@microsoft.com

has found that pair design is even more effective than pair
programming, requiring fewer person hours to produce the
correct answer in comparison to independent design.

Recent work has proposed a variation of pair programming,
called side-by-side programming, wherein two programmers,
sitting next to each other and using different workstations,
work together on the same task[7]. A recent study has shown
that, in comparison to pair programming, side-by-side
programming offers significantly lower completion times[8].

Previous work on side-by-side software development,
however, leaves several questions answered. How can it be
applied to the distributed case? How effective is such
development — in particular, does it impose a performance
penalty, and is it easy to use as the co-located case? It allows
users to control when they communicate with each other, view
each others’ actions, and input concurrently. In what ways is
this control exerted in practice, and on what factors does it
depend? In particular, given the differences reported in pair
programming and pair design, what is the effect of the level of
abstraction on the side-by-side collaboration modes chosen by
the developers? What kind of visualizations can show these
differences in different side-by-side software development
sessions? Given that side-by-side software development can
allow developers to work independently, can it lead to
conflicting changes?

A previous workshop paper[9] by us on this subject
presented two systems for supporting distributed side-by-side
development. It also provided some preliminary experience
with the system based on five experiments. This is a follow-up
paper, focusing, as the title indicates, on experiments. It
provides a more in-depth evaluation of the systems in several
ways. First, it describes results of six more experiments, which
were performed after the workshop paper was published.
Second, it provides visual and quantitative analyses, which
were missing in the workshop paper. Finally, its qualitative
analysis considers several additional factors such as the level of
abstraction used by the developers.

The research described here was carried out at two different
organizations, Microsoft and Tata Consultancy Services (TCS),
during summer visits to these organizations by the first author.
The two case studies are interesting because of the great
differences in the software development environments used in
the two groups involved in this project. The Microsoft group

used a traditional environment in which the application-
development language (C#) was compiled, the application code
was explicitly divided into multiple files, and a desktop
programming environment and version control system was
used to manipulate and store these files. The TCS group, on the
other hand, developed web-based J2EE applications. It used a
weakly-typed interpretive, proprietary web development
environment called InstantApps[10]. Developers did not
explicitly break the artifacts they created (such as JavaScript
files and form definitions) into files and check them in and out
— instead they simply pushed their changes to and loaded them
from the InstantApps meta-data transactional repository server.
The environment provided multiple levels of abstraction to
develop an application. As a result, it allowed us to determine
the influence of the level of abstraction on the nature of side-
by-side software development. Because of the variety in the
InstantApps abstractions, the bulk of our experiments were
carried out at TCS.

The rest of the paper is organized as follows. Section II
describes previous work on which our research is built.
Section III motivates and describes our experimental tasks, and
present a visual, quantitative, and qualitative analysis of the
experiments. Finally, Section IV summarizes our contributions
and gives directions for future work.

II. PREVIOUS WORK

Various forms of collaborative software development can
be distinguished by the degree of coupling among the
workspaces of the members of a software team.

In the traditional programming model studied by Brooks,
no coupling occurs directly among these workspaces — all
sharing occurs when a workspace is committed to a shared
repository. Higher-degrees of coupling support continuous
collaboration (an extension of the idea of continuous
coordination[11]), wherein programmers can be aware of
ongoing edits made by their team members. Several systems
have been developed to support such collaboration including
Jazz[12], Palantir[13], and CollabVS[14].

It is possible to use these systems to support an infinite
range of workspace couplings. However, to the best of our
knowledge, only four degrees of workspace coupling have been
studied so far, which, in order of coupling degree, are
traditional no-coupling, continuous conflict resolution, side-by-
side programming, and pair programming.

In continuous conflict resolution, programmers work
concurrently on different tasks, coupling their workspaces only
to identify and resolve conflicts. A higher coupling occurs in
side-by-side programming, wherein two programmers, using
different workstations, work on the same task. The highest
form of coupling occurs in pair programming, which is a
component of extreme programming. Here two programmers,
using a single (logical) workstation, work on the same task and
provide input serially. The developer providing input is called
the driver, and the other programmer is called the navigator.
The developers take turns in being the driver/navigator.

In this paper, we use the term “coupling” broadly to refer to
both (a) updates to local workspaces in response to edits made

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

by others, and (b) awareness of actions of others. In the CSCW
literature, the former is sometimes referred to as coupling and
the latter as awareness[15].

The non-traditional coupling modes have been studied to
some degree in lab/field studies. Two lab studies have shown
that continuous conflict resolution provides a “stitch in time”
by preventing (the commitment of) costly conflicts that would
be detected at test or usage time in traditional programming
[13, 14]. The recent study[8] mentioned earlier showed that, in
comparison to pair programming, side-by-side programming
offers significantly lower task completion times while slightly
reducing the understanding developers have of code written by
their partners. It also showed that developers who liked
working together on a single task preferred side-by-side
programming to pair programming. Previous work has not
characterized the ways in which side-by-side programming is
used, how appropriate it is for design tasks, and how it can be
distributed - issues addressed by our work.

There have been several, often contradictory, studies of pair
programming. One study of student programmers
implementing class-assignments finds that pair programming
takes more person hours but results in about 15% fewer bugs[4,
5]. The additional time taken depends on whether the students
have previously done pair programming together. The first time
a pair works with each other, they take about 50% more time,
and subsequently, they take about 15% more time. The
difference is explained by the time needed to “jell together” the
first time. Assuming certain times for fixing and detecting
bugs, the study claims that pair programming actually increases
the productivity of an individual programmer.

The study also found that in the pair programming case (a)
80% of programmers felt higher satisfaction, (b) more
alternatives were explored and fewer lines written, and (c) there
was more team building as programmers were involved with
each other and enjoyed celebrating project-completion
together.

At least one other study seems to confirm the above work
[16]. It differed from the previous study in two main ways.
First, the programmers were from industry rather than a
university. Second they did a single 45-minute lab exercise
with their partners rather than multiple class assignments. The
study found that, in comparison to uncoupled programming,
pair-programming took about 50% more person hours but
resulted in about 50% better readability, 30% better
functionality, 75% more enjoyment, and 75% more confidence
in solution.

Not all studies of pair programming have been as positive.
Nawrocki and Wojciehowski[17] found pair programming
often took about twice as many person hours, though the pair-
programming times showed less variance. Ratcliffe and
Robertson[18] found that programmers with high (self-
reported) skills did not like being paired with those with low
skills.

The above studies have been empirical. Based on the results
of some of these studies and numbers reported in the literature
on various factors influencing project costs such as the time it
takes to write a line of code and fix a defect, and the cost of

missing a deadline, Muller and Pandberg[19] characterize cases
where pair-programming is more cost effective and those in
which independent programming is more economic.

All of the pair-programming studies mentioned above have
assumed that the programmers are co-located. Some
researchers have explored a distributed version of pair
programming, where two remote programmers using different
workstations view a single logical workspace. The shared
logical workspace is created by coupling either (a) the screens
of the users using a generic desktop sharing system, or (b) the
edit buffers and other components of the semantic state of the
software development environment of the programmers. The
former is slower, but the latter requires the developers to
manually synchronize their views. A study comparing
distributed and co-located pair programming[20] has found that
distance does not matter. This is an interesting result, as several
studies of traditional programming have found that distance
reduces productivity[2], though one shows that this is not
always the case[21].

Motivated by these results, we developed a distributed
analogue of side-by-software development, reported in our
workshop paper[9]. Each developer in the pair interacts with
two computers (Figure 1) — one primary computer to act as the
driver of his subtask, and an awareness computer to act as the
navigator for the partner’s subtask. Thus, each programmer
interacts with the windows displayed on his/her primary
computer, and each awareness computer shows the screen of
the partner’s primary computer. The developers use the phone
to talk to each other. No video channel is established between

them.
BN

Figure 1. Distributed side-by-side ingteraction model. The display of the
primary computer of the left (right) developer, A(B), is shown on the
awareness computer of the right (left) developer.

Because of the differences in the development
environments used in the two organizations, we created two
different implementations of this interaction model. Both
implementations use desktop sharing systems to display the
screens of primary computers on the corresponding remote
awareness computers. Moreover, in both implementations, the
two remote primary computers are also coupled. This coupling
is provided in the Microsoft environment by the file system,
and in the TCS environment by the InstantApps server. More
details about the motivation and operation of the
implementation are given in the workshop paper[9].

III. EVALUATION

A. Evaluation Goals and Comparison Perils

The goal of this research was to determine the
appropriateness of distributed side-by-side collaboration in the
two groups involved in the research, and industry, in general.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

Hence we decided to choose for our study the kind of tasks
given to these groups, and use actual members of the groups as
subjects. As we see below, this decision had an impact on
several aspects of our evaluation.

Our initial approach was to run experiments that compare
distributed side-by-side, pair and traditional uncoupled
software development. For the evaluation metric, we chose task
completion times. We decided to perform N rounds of
experiments, where each round involved three pairs of
developers, each of which performed three pairs of tasks using
the three modes of development, respectively. To illustrate,
consider a round with three developer pairs, (Py;, P12), (P21,
Py), (P31, P3), and three task pairs, (T11, T12), (T21, T22), (T3,
Ts,). First, Py; and Py, used traditional uncoupled development
to independently complete tasks T;; and Ty, respectively,
while P,; and P,, (P3; and P3,) worked collaboratively on both
of these tasks, using distributed pair (side-by-side) software
development. We measured the time it took to complete each
of the two tasks in all three cases. As this time could depend on
the pair, we next changed the task pair to (T,;, T»,), and made
each pair of developers implement it using a collaboration
mode they had not used before; and finally, we changed it to
(T31, T32), and repeated the process. At the end of this round,
each pair had used each distributed collaboration mode. The
developers performed the exercises as they would any task — at
their own desks with no time limits.

After the first round of experiments, we found that the task
completion times did not follow any trend. A close analysis of
the recordings showed us that this was partly because some
pairs, unlike others, made small, “silly,” mistakes that cost
them a significant amount of time. For example, one pair at
TCS made the mistake of assuming that the field they had
called “service provider” was actually named “solution
provider,” and it took them more than half an hour (one person
hour) to discover this mistake as the environment does not
check that a referenced field is actually defined. This problem
of weak typing did not occur in the Microsoft experiments, but
even in these experiments we saw such small but costly errors.
In one of these exercises, a complex recursive routine had an
error that the first author (watching the experiment remotely)
immediately noticed but which took the pair more than forty
five minutes (one and a half person hour) of testing and
inspection to discover and fix. Anyone who has programmed
can relate to such mistakes, and the time taken to fix them can
add up quickly.

We could have run a large number of experiments to try
and cancel the impact of these mistakes. However, we found
that an even more fundamental reason for the variance in task
completion times was that most of the tasks, especially those at
TCS, involved user-interface design. This was consistent with
the actual tasks assigned to the groups. The different pairs took
different amounts of time to discuss and craft the user-
interfaces, and there was no objective standard to evaluate the
quality of the user-interfaces. Specifying the details of the user-
interface for them would have been inconsistent with our goal
of making the tasks realistic for the involved groups.

Yet another cause for the variation at TCS was that our
requirement documents for the tasks were modeled after, and

were typically parts, of actual requirement documents given by
customers. These were somewhat ambiguous, which resulted in
different pairs implementing different functionalities.

This variation of task completion times is consistent with
the tremendous variation in the results of some of the studies
comparing pair and traditional programming, surveyed in
Section I

On further reflecting about this problem, we realized that
there was another valid objective way to evaluate (distributed)
side-by-side development, which relies on the fact that it
subsumes traditional and pair development, in that users can
choose to ignore the primary or awareness computers,
respectively. Thus, instead of trying to determine what style of
collaboration yielded the best productivity, we could simply
study how the subjects worked together. If they primarily did
traditional or pair development, then side-by-development
offers no value, otherwise it does. This approach is a special
case of evaluating a technology, based not on how it improves
productivity, but to what extent its various aspects are actually
used, assuming only useful features are used.

Our goal, then, became characterizing the coupling used at
each time moment in various (distributed) side-by-side
sessions, and determining the factors on it depended — in
particular the software development abstraction. This required
us to formally define the notion of coupling and abstraction.

B. Coupling and Abstraction Characterization

As mentioned before, side-by-side collaboration allows
developers to control when they communicate with each other,
view each others’ actions, and input concurrently. This
flexibility allows the definition of a wide range of couplings at
each moment of time:

* Driven 1(2): User 1(2) works on his primary computer, at
least one of them talks, and user 2(1) does not work.
Thus, this is a pair programming mode in which user 1 (2)
is the driver and user 2 (1) is the navigator.

* Discussion: User 1 or 2 talks, and neither of them works.

* Concurrent-coupled: Both user 1 and 2 work on their
primary computers, and at least one of them talks.

* Concurrent-uncoupled Both user 1 and 2 work on their
primary computers, and neither of them talks.

* Solo 1(2): User 1(2) works on his primary computer, user
2(1) does not, and neither of them talks.

* Thinking: Neither user 1 or 2 works or talks.

Driven, discussion, solo, and thinking can also occur in pair
development; and solo, concurrent and thinking can also occur
in traditional development (Figure 2). The distinguishing
aspect of distributed side-by-side development is the ability to
support and switch among all of these modes.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

Traditional

Figure 2. Coupling modes supporte by traditional indivodual, pair, and side-
by-side development.

As mentioned above, pair design and programming yielded
different results in some experiments. The software
development mechanisms used at Microsoft and TCS allowed
us to study abstractions of four different levels, where the
lower the level of the abstraction, the more the details given to
the computer:

1. Understanding requirements: The developers read
paper/electronic copies of the requirements. They do not make
any edits. This is the highest abstraction used.

2. Visual data: A visual language is used to define the data
schema and the user interface for entering the data. This
abstraction was used only in TCS, and corresponded to
specifying forms, tabs, and menus.

3. Visual algorithms: A visual language is used to specify
semantic constraints on application data. This abstraction was
used only in TCS, and involved specifying workflows, roles,
and access permissions.

4. Text coding: A procedural language is used to develop
software. In TCS, the language was JavaScript, and at
Microsoft, it was C#.

C. Exercises

Our next step was to determine the coupling-abstraction
relationship in practice. As mentioned above, after the first
round, we focused only on distributed side-by-development. As
we could not use a comparative approach, we decide to focus
on task diversity in our experiments.

At Microsoft, the exercises were maintenance problems
involving improvements to existing research software
implemented using the model-view-controller framework:

1. Scanning: A scanner that assumes a fixed amount of
space between tokens is changed to support a variable
amount of space between the tokens.

2. Shape groups: A drawing editor is extended to support
grouping of shapes into nested shape groups.

These two exercises were performed by two different
distributed pairs.

The TCS exercises
applications from scratch:

involved writing several Web

1. Pet Store: Owners arrange specific pets into categories.

2. Help Desk: An employee fills a ticket to request help.

Conference review system: Authors submit papers,
which are evaluated by reviewers and then selected by
a conference chairman.

4. Work request tracking: A customer makes a request for
some work assigned to a worker by a team lead.

5. Purchase order: A customer orders a set of items from
a specific vendor.

6. Stock count: A retailer manages the count of various
items in the store.

The TCS experiments involved six distributed pairs. Each
pair implemented two of these applications.

Each pair also did an unrecorded warm-up exercise to get
used to distributed side-by-side development and “jell” with
each other, which was not considered in the evaluation.

Thus, fourteen two-person experiments were carried out,
two at Microsoft, and twelve at TCS. As mentioned before, the
bulk of the experiments were carried at TCS because of the
variety in the InstantApps abstractions. The session of each
developer was recorded using screen and audio capture
software. Due to technical difficulties, we could not use the
recordings of one of the pairs — hence we effectively used
twelve pairs of recordings, whose total length was about 46
hours.

We developed requirements documents for all exercises.
The first author wrote the requirements documents for the
Microsoft tasks. As mentioned before, at TCS, our requirement
documents were modeled after, and were typically parts, of
actual requirement documents given by customers.

Our study participants were employees of TCS/Microsoft.
They included five women and eleven men in the age range 20-
33. The Microsoft subjects included the last author (12 years
industrial experience) and three summer interns. The TCS
subjects were all full-time employees with 1-4 years industrial
experience.

D. Annotated Recordings and Intersections

As an initial cut at characterizing the coupling-abstraction
relationship in the twelve sessions, we divided the
collaboration time into discrete units, and for each unit, we
manually recorded (a) whether the developer talked/worked
during that time, and (b) the abstraction used by the developer.

The time granularity used was 1 minute. If the user talked
during any portion of a minute, he or she was considered to
have talked during that minute. A developer was considered to
have worked during a minute if the screen changed during that
period. The first abstraction used by the developer in the
minute was the one that was noted. The coder had to use the
context of the conversation to determine the abstractions used.

As this is a novel way of characterizing collaboration
sessions, we could not rely on a standard approach to choosing
this granularity. Naturally, the finer the granularity, the more
precise the measurements, but the more the effort required to
manually code the units, and the more the chance of making

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

errors in noting the passage of time and making the correct
annotation. As we had about 46 hours of recordings, a 1
minute granularity yielded about 3000 annotations. A smaller
time unit would have been hard to keep track of and resulted in,
we believe, an inordinate amount of effort. Instead of using a
fixed length granularity, we considered noting the time of each
event. However, this would have further increased the
annotation effort and error, as there were, typically, several
speech utterances and display changes in a minute. We also
considered automatic techniques for detecting speech and
display changes, but found that reliably eliminating background
noise is still a research topic.

We wrote programs that intersected the talking/working
annotations for each collaborative session to derive the joint
coupling at each moment of time.

E. Quantitative Analysis

We used these data to compute aggregate statistics
regarding the abstraction/coupling relationship. In such
statistics, user 1 and user 2 have no meaning, as they are bound
to different users in each experiment. Therefore, when
presenting such data, we combine solol (driver 1) and solo 2
(driver 2).

Table 1 shows, for each abstraction level, the percentage of
time spent in each coupling mode (on average, across all
sessions). For example, the 0.45 entry in the cell corresponding
to Requirements row and Discussion column indicates that, on
average, 45 percentage of the total time spent on requirements
was in the discussion coupling mode. Thus, in each row, the
numbers add up to 1 (100 per cent).

Table 1 does not indicate the percentage of time spent on
each abstraction. The Total column of Table 2 gives this data.
For example, the 12.9 entry for the Requirements row and the
Total column indicates that on average 12.9 per cent of the total
time was spent on requirements. Given this column, it is
possible to determine the fraction of the total time spent on a
particular abstraction and coupling. For example, the fraction
of the total time spent in the discussion mode and requirements
abstraction is 12.9 * 0.45 = 5.82. This information is given in
the columns of Table 2. The bottom row gives the fraction of
the total time spent in the various coupling modes across all
abstractions. Each value in this row is a column sum.

Several conclusions can be drawn from these tables about
the average time spent on various couplings and abstractions.

Table 1 shows that the degree to which a coupling mode
was used depended on the abstraction. Requirements involved
only one percent use of the two uncoupled modes — solo and
concurrent-uncoupled. The next lower abstraction, visual data,
involved eleven percent use of these modes, while the two
lower-level abstractions, visual algorithm and text coding, had
much greater use — forty two and twenty five percent,
respectively. These findings are consistent with the intuition
that (a) a higher-level abstraction allows more time to be spent
on decisions, and less in execution of these decisions, and (b)
when two people are working together, decisions are usually
made collaboratively.

Table 1 Percentage of time spent in each coupling mode in each abstraction

Solo | Conc-Uncpld Discussion Driven Conc-Coupled Thinking
Requirements 0.00 0.01 0.45 0.37 0.08 0.07
Visual Data 0.08 0.11 0.04 0.36 0.40 0.00
Visual Alg. 0.15 0.27 0.05 0.21 0.32 0.00
Text Coding 0.02 0.23 0.04 0.22 0.47 0.00

Table 2 Percentage of total time spent in each coupling mode and abstraction

Solo | Conc-Uncpld Discussion Driven | Conc-Coupled Thinking Total
Requirements 0.03 1.17 5.82 4.82 1.11 0.93 12.9
Visual Data 3.93 5.68 2.19 18.26 20.31 0.28 50.6
Visual Alg. 2.53 4.71 0.78 3.64 5.54 0.03 17.3
Text Coding 0.46 4.50 0.68 436 9.22 0.00 19.2
Total 7.0 15.1 9.4 31.1 36.2 1.2
The bottom row of Table 2 shows the relative use of the side programming to switch between existing modes and the

various coupling modes. Concurrent coupled and driven modes
were by far the dominant modes, accounting for 36 and 31
percent of the time, respectively. The next most used mode was
concurrent uncoupled, accounting for 15 percent of the time. 9
percent of the time was used for discussion, and 7 percent for
solo development. An insignificant amount of time was spent
in (pure) thinking. Thus, together, the exercises involved a
significant use of all modes except the pure thinking mode.

As Figure 2 indicates, concurrent-coupled is unique to side-
by-side development. The large fraction of the time (thirty six
per cent) spent in this mode seems to contradict studies that
have found that, typically, a person cannot perform two
foreground activities (e.g. talking and driving in unknown
terrain) simultaneously. As we show below in the section on
qualitative analysis, there are two explanations for our results.
One is that the developers had so much awareness of each
other’s activities, that they could easily perform their own
activity and discuss the task of their partners. The second is that
developers were often interleaving their working and talking,
and the one minute granularity could not distinguish between
interleaving and true concurrency. The distributed side-by-side
interaction model made such rapid interleaving possible, as
both developers’ complete work was visible at all times.

The fact that the developers used one of the concurrent
modes for about half the time is also fairly surprising, as it
indicates they were able to dynamically break their task into
components, and did not simply resort to pair development.

Table 1 also shows that all abstractions involved a
significant use of all modes. The one exception was
requirements analysis, in which ninety one percent of the time
the developers used the coupling modes provided by pair
development (Figure 2) — the concurrent-coupled (uncoupled)
mode was used eight (one percent) of the time.

The above observations provide a new argument to
motivate (distributed) side-by-side development in certain
situations. Given a single task to implement, a pair of
developers does not simply revert to traditional or pair
development. Instead, they prefer the unique ability of side-by-

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

additional mode supported by it. This finding motivates
distributed tools that allow developers to easily switch between
coupled and uncoupled and concurrent and serial work.

One of the issues in collaboration is the amount of time a
person spends on some activity before switching to another
activity or being interrupted by a collaborator. This time gives
an idea of how often a user switches context, and maybe loses
important state of the previous context. We defined a related
metric, atomic segment, which is specific to side by
development. It is the time period during which neither
programmer changes his/her abstraction and the coupling
mode. We found that the average length of the atomic segments
for different modes were remarkably close to each other, lying
in the range: 2.3 to 2.75 minutes.

The aggregate data presented here does not describe the
influence on the coupling-abstraction relationship of the
individual, task and development environment. To capture
these factors, we developed visualizations for summarizing
each collaboration session.

F. Visual Analysis

We divide each session into variable length time segments,
where a time segment is an interval in which the work/talk
status and abstractions used remains constant. The coupling
and abstractions of a segment are represented by zero, one or
two shaded rectangles, with rounded or regular corners (Figure
3(a)). If developer 1(2) works during a segment, then a
rectangle of regular height is drawn at the high (low) vertical
position. The rectangle has regular (rounded) corners, if the
developer talks (does not talk) during the segment. If the
developers talk without working, then a rectangle of almost
zero height is drawn at the middle vertical position. Thus, the
height of the shaded area in a segment indicates the number of
developers working during that time period. When both
developers work, the two rectangles for them (do not) meet
seamlessly if they (do not) talk during that time period.
Finally, the horizontal position of the left (right) edge of the
rectangle(s) indicates the start (end) time of the segment. No
rectangle is drawn for the thinking mode.

Solo1 Solo 2

Uncoupled Coupled

il — "l

a. Coupling Visualization

W

¢. RSNS (137) Pair 1 Shape Groups

R ——

m”m I

Concurrent Discussion Drivenl Driven2 Concurrent Think

Requirements Visual Data Visual Text
Algorithm Coding
|| [I

b. Abstraction Visualization

™

d. SBVS (37) Pair 2 Scanner

e. AJHD Pair3 Help Desk (115)

ol et ity =

[AJIFC Pair 3 Work Request Tracking (105)

38|

[T

g. RVPO Pair 4 Purchase Order (229)

|
|
)

I

h. RVCR Pair 4 Conference Review (76)

U .y

J. AASC Pair 6 Stock Count (117)

B 1

o e

i. RSCR Pair 5 Conference Review (82)

= (o

k. AAPS Pair 6 Pet Store (81)

. RSIFC Pair 5 Work Request Tracking (167)

n. ASSC Pair 7 Stock Count (133)

Figure 3. Experiment id, pair id, application name, wall time, and visualization

The shade of a rectangle indicates the level of the
abstraction used to perform the associated work - the lighter
the shade, the higher the level of the abstraction (Figure

3(b)).

Figure 3 (c-n) visualizes all twelve side-by-side software
development sessions we annotated. For each exercise, we
show the application and programmer pair. We also show the
wall time (half the number of person minutes) taken by the
exercise. The reason for the relatively low completion times
of the complex Web applications is that InstantApps is an

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

application builder “instant” creation of

applications

allowing

As one would expect, the nature of the degree to which a
mode was used depended on the application. Application
dependence is illustrated by the two Microsoft experiments.
In the shapes group application of Figure 3(c), most of the
time was spent in the two concurrent programming modes,
with one programmer modifying the view and controller, and
the other changing the model. On the other hand, in the
scanning problem of Figure 3(d), which involved changes to

only one file, the developers did not use the concurrent
programming modes. Based on an examination of the
recording, we believe this happened because they were not
able to parallelize this task. The architecture used for this
experiment required file saves/loads to share edits, and thus
did not merge concurrent changes. It is possible that the
developers did not even try to parallelize the tasks because of
this limitation. The TCS environment, on the other hand,
offers concurrency control mechanisms that safely merge
edits to different fields of a web page, thereby allowing
developers to simultaneously edit the same display. As a
result, almost all TCS experiments showed some significant
use of the concurrent modes, though some tasks showed less
concurrency. In particular, the two TCS pairs who were
given the conference review problem did relatively little
concurrent programming (Figure 3(h) and (i)). We believe
this happened because the task was relatively small and, as a
result, more atomic and difficult to parallelize.

Figure 3 also shows individual differences. Different
pairs took different amount of times on the same task. For
instance, pair 3 and 5 took 105 minutes (Figure 3(f)) and 167
minutes (Figure 3(1)), respectively, on work request tracking.
Such differences are consistent with the discussion in Section
III.A on comparison perils.

One must carefully analyze the recordings to determine
the exact reason for some of the individual differences.
However, our abstraction visualization scheme made it easy
to spot the reason for one pair - pair 4 never used visual
algorithms and text coding on the two tasks given to them
(Figure 3(g and h)), even though other pairs who performed
the same tasks did do so (Figure 3(i and m)), and in one case,
finished the task in much less time. The grading of their
work and examination of the recordings showed that pair 4
was an outlier, much slower than the rest, and never
completed its tasks.

As mentioned before, our aggregate data showed that all
modes were used. Figure 3 shows this was not the case for
individual exercises. However, it does show that each session
used the unique capabilities of side-by-side development. In
particular, every exercise involved the use of the concurrent-
coupling and driven modes, and except for the pair 2 scanner
exercise (Figure 3(d)), it also involved the use of the
concurrent-uncoupled mode, and except for pair 5
conference review exercise (Figure 3(i)), it involved also the
use of both driven 1 and 2 modes. This shows that in each
exercise, the pair used the unique capability of side-by-side
development to (a) support the concurrent-coupling mode,
and (b) easily switch between various coupling modes
without taking any explicit user-interface action.

G. Qualitative Analysis

The visual and quantitative analyses, while relatively
succinct, leave several important questions unanswered,
which is addressed by the qualitative analysis presented here.
It is based on our observations of the live sessions and
recordings and answers to questions posed to the subjects.

In any distributed collaboration, performance is an issue.
In our collaboration model (Figure 1), response times of

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

primary computers do not include network delays, while
those of awareness computers do. We found that though the
users had the capability to do so, they never interacted with
awareness workstations, perhaps because of the overhead of
taking control from their partners. If they had to manipulate
an object displayed on that computer, they simply navigated
to it on their primary workstation. Network delays are also
involved in keeping primary and awareness computers
synchronized. The users, connected by a fast LAN, did not
find these delays to be an issue. In fact, they said that they
felt they were more or less virtually sitting side-by-side
modulo occasional problems of gaze awareness wherein it
was difficult to know if their partners were looking at their
awareness computers.

We know from the quantitative and visual analyses that
the unique capabilities of our interaction model (Figure 1)
were used, but not the ways in which they were used and
how effective they were for different pairs. We present
below both some examples to shed light on these questions.
Some of the specific scenarios described here were
completely unanticipated by us.

Fault tolerant pair programming: One of the
unanticipated scenarios actually involved pair programming
in which the two computers available to each developer were
used for fault tolerance. During the pair programming
session of Figure 3(d), the driver’s programming
environment crashed. The collaboration continued smoothly
as the developers changed roles, with the previous navigator
now interacting with his programming environment, and the
previous driver switching his focus from his primary
computer to his awareness computer. This was a rare
scenario in that we noticed only one occurrence of it.

Two-display pair programming: Another un-anticipated
and more frequent scenario also involved pair programming
wherein the driver’s primary computer showed the code
being developed and the navigator’s primary computer the
requirements document, During the session of Figure 3(d),
the pair was identifying appropriate test cases when the
navigator noticed that the requirements document contained
test cases they could directly use; thereby significantly
reducing task completion time.

Nature of communication: The communication included
not only discussion of test cases, as in the example above,
but also thinking aloud, rhetorical questions, announcing
saves to the file system (in the Microsoft experiments),
(solicited and unsolicited) code-inspection and help,
discussion of the names, locations, grouping and initial
values of form items (in the TCS experiments), clarification
of how the programming abstraction/environment worked,
algorithm design, asking confirmation for actions such as
deletion of a form item, and assignment of tasks to the
partner.

Help and Experiment Realism: The fact that several
aspects of the collaboration involved giving help to the
partner about the programming environment and task
justifies our decision to use subjects that were familiar with
the programming environment and were qualified to do the

problems. Otherwise, there would have been more
communication than in a real setting.

Nature of concurrency: Concurrent (coupled/uncoupled)
work took several forms. (a) Concurrent programming: The
developers simultaneously work on their subtasks such as
changing the view and model concurrently in the shape
groups problem (Figure 3(c)). Concurrent
programming/browsing: This is an extension of pair
programming in which the navigator browses through code
and requirements documents, while the driver makes changes
to code. For example, in a particular phase of the scanning
problem (Figure 3(d)), while the driver was making a change
to the code, the navigator browsed through the code to find
other locations where a similar change had to be made.
Concurrent browsing: In this mode, both programmers
browse through code. Almost all the concurrent interaction
we see in Figure 3 during requirements understanding
consisted of such interaction. For example, at the start of the
scanning problem (Figure 3(d)), the two programmers
concurrently browsed through the code they had to change to
try and understand how to change it

Weak typing: As the JavaScript-based InstantApps
environment is weakly typed, it allows developers to make
references to form items, variables, roles and other identifiers
without declaring them. The developers used this feature to
work concurrently on dependent subtasks without worrying
about compilation/build problems.

Programmer/role: The amount of communication
depended on the developer/role. We saw this in a Microsoft
pair and at least one TCS pair — most of the communication
was initiated by one of the members of the pair. In the case
of the Microsoft pair, the communication initiator was the
supervisor of his partner — so the asymmetry could be
explained by the difference in role and/or experience. In the
TCS pair, the initiator was the more extrovert person and
also a tester who did not normally do development activities.
Thus, the asymmetry could be explained by the difference in
experience and/or personalities.

True concurrency vs. fast interleaving in concurrent-
coupling: As mentioned earlier, our 1 minute granularity
could not always distinguish between interleaving and true
concurrency in the concurrent-coupled mode. The granularity
would have to be very small to always make this distinction,
as we found many cases in which a developer asked for a
confirmation, the partner glanced at the awareness computer,
approved, and returned to the primary computer, all in less
than fifteen seconds. The above is an example of
interleaving of work. We also saw developers use peripheral
awareness to work and talk concurrently. For example, one
of the developers involved in the shape group task (Figure
3(c)), while working on the view, asked his partner working
on the model to use relative rather than absolute coordinates.

Conflicts: None of the pairs made conflicting changes in
the concurrent programming modes, even though automatic
conflict notification was not provided. The reason is that
programmers continuously communicated with each other
about potentially conflicting changes such as the nature of
constructors, order of parameters, names and types of form

This research was funded in part by NSF grants IIS 0312328, IIS
0712794, and IIS 0810861.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

items, and the names and rights of roles. As the developers
did not even try to make conflicting changes, they prevented
conflicts even earlier than in continuous conflict
resolution[13, 14], which would still be useful for
preventing conflicts between different pairs.

Ineffective collaboration: We saw not only positive
outcomes of distributed side-by-side development such as
conflict prevention and correction of mistakes, but also
certain inefficiencies. For example, in the (mostly pair-
programming) session of Figure 3(g), one of the developers
asked his partner for confirmation of each identifier name,
which was always provided by the partner. While such
confirmation does increase confidence in one’s choices - one
of the benefits of pair programming [16] - it also increases
the task completion times. We also observed, in the
concurrent-coupled mode, a developer repeatedly asking for
the attention of her partner, who was resolving a subtle
problem with the JavaScript she was writing. This example
shows that the quality of advice in the concurrent-coupled
mode is probably not as effective as in the driven modes.

IV. CONCLUSIONS AND FUTURE WORK

This work makes several novel contributions. It identifies
several of the specific coupling modes that occur in
distributed side-by-side development, showing that such
development is in fact a union of traditional programming,
pair programming, and the concurrent-coupled mode.
Furthermore, it gives a meaningful way of partitioning a
collaborative session into atomic segments, and presents a
way of visualizing the task-coupling relationship in these
segments. Finally, it describes results of observing about
forty six person hours of such development involving twelve
sessions. These results indicates that (a) developers tend to
use and switch between all of these modes in realistic
exercises; (b) social protocol prevents conflicts in the
concurrent modes; and (c) the exact mode used depends on
the application, users, abstraction, and environment. To the
best of our knowledge, no previous work has made any of
these points.

Our work has implications for the design of distributed
collaborative technology. It motivates the distributed
interaction model of Figure 1 by showing that the unique
capabilities of it were used extensively. = While the
(quantitative, visual and qualitative) analysis we presented to
make this point is not bullet proof, to the best of our
knowledge, it goes far beyond what has been presented to
motivate other synchronous collaboration technologies.

This paper also helps us better understand the practice of
distributed collaborative software development by making
several observations regarding its use. Task completion times
are problematic as a measure of goodness of such
development. Given a choice, developers like to mix the
collaboration modes of traditional uncoupled development
and pair development. When understanding requirements
and creating data structures, developers tend to couple their
work more than when developing algorithms (visually or
textually). In fact, when understanding requirements, they
barely use the capabilities of our interaction model, and

could probably make do with a simple shared desktop. Some
collaborations increase task completion times without
improving the productivity or quality of code. If conflicts are
a major issue, distributed side-by-side collaboration can help
ameliorate the problem.

The extent of our contribution can be better understood
by identifying what this paper does not address. It does not
claim that our results regarding the practice of distributed
side-by-development apply also to the local case. Moreover,
it does not show that distributed side-by-side development
improves productivity, completion times, or code quality in
comparison to other form of collaborative development. In
addition, our two display interaction model is not the only
approach to support the coupling modes described here. In
addition, it would be useful to consider other visualizations
that, for instance, provide a fine-grained classification of the
work (e.g. browsing vs. editing) and communication (e.g.
thinking aloud vs. help) carried out in a session.
Furthermore, it would be useful to develop multimedia tools
that automatically determine when a developer is
talking/working by determining audio-level /screen changes.
In addition, it would be useful to determine which display
(primary or awareness) each developer views during each
time unit to address the gaze awareness problem. It would
also be useful to relate the concurrency and communication
times in side-by-side programming to those found in
traditional software development and radical co-location
[22].

In this paper, we have positioned our research with
respect to other work in software development. It would be
useful to also take a more collaboration-centric view point by
comparing it with general research in awareness. In
particular, it is important to compare one-display and two-
display solutions to awareness. In addition, it would be
useful to compare our coupling modes, defined for multi-
view distributed collaboration, with those identified in the
context of single-view co-located tabletop collaboration [23].
It would also be useful to make our visualizations
independent of software development abstractions. Finally, it
would be useful to generalize the notion of side-by-side
collaboration to more than two users, develop an appropriate
visualization of such a collaboration, and determine if it is
useful in software development and other activities such as
design.

ACKNOWLEDGMENT

Megha Anand coded the TCS recordings and helped
create the requirements documents at TCS. Sasa Junuzovic
helped design the visualizations.

REFERENCES
[1] Brooks, F., The Mythical Man-Month. Datamation, 1974. 20(12): p.
44-52.

[2] Herbsleb, J.D., A. Mockus, T. A. Finholt, R. E. Grinter . Distance,
dependencies, and delay in a global collaboration. in Proc. CSCW. 2000.

[3] Teasley, S., L. Covi, M. S. Krishnan, J. Olson. How does radical
collocation help a team succeed? in Proc. CSCW. 2000.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8295
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8295

[4] Williams, L., et al. Building Pair Programming Knowledge through a
Family of Experiments. in [EEE International Symposium on Empirical
Software Engineering. 2003.

[5] Cockburn, A. and L. Williams, The Costs and Benefits of Pair
Programming. Extreme Programming Examined. 2001: Addison Wesley.

[6] Lui, KM., K.C.C. Chan, and J. Nosek, The Effect of Pairs in Program
Design Tasks 1EEE Trans. Softw. Eng. , 2008 34 (2): p. 197-211

[71 Cockburn, A., Crystal Clear. A Human-Powered Methodology for
Small Teams. 2005: Addison-Wesley.

[8] Nawrocki, J.R., et al., Pair Programming vs. Side-by-Side
Programming, in Software Process Improvement. 2005, Springer Berlin /
Heidelberg. p. 28-38.

[9] Dewan, P., P. Agarwal, G. Shroff, R. Hegde. Distributed Side-by-Side
Programming. in 2009 ICSE CHASE Workshop . IEEE.

[10] Shroff, G., P. Agarwal, and P. Devanbu. Instant Multi-tier
Applications without Tears,. in 2nd India Software Engineering
Conference. 2009. Pune, India.

[11] Redmiles, D., et al., Continuous Coordination: A New Paradigm to
Support Globally Distributed Software Development Projects.
Wirtschaftsinformatik, 2007. 49 (Special Issue): p. 28-38.

[12] Cheng, L.-T., et al. Jazzing up Eclipse with collaborative tools. in
Proceedings of the 2003 OOPSLA workshop on eclipse technology
eXchange. 2003.

[13] Sarma, A., B. G, and A.v.d. Hoek. Towards Supporting Awareness of
Indirect Conflicts across Software Configuration Management Workspaces.
in Twenty-second IEEE/ACM ASE 2007. Atlanta, Georgia.

[14] Dewan, P. and R. Hegde. Semi-Synchronous Conflict Detection and
Resolution in Asynchronous Software Development. in ECSCW. 2007.

[15] Dewan, P., R. Choudhary, and H. Shen, 4n Editing-based
Characterization of the Design Space of Collaborative Applications.
Journal of Organizational Computing, 1994. 4(3): p. 219-240.

[16] Nosek, J.T., The Case for Collaborative Progamming. CACM, 1998.
41(3): p. 105-108.

[17] Nawrocki, J. and A. Wojciehowski. Experimental Evaluation of Pair
Programming. in European Software Control and Metrics. 2001. London.

[18] Ratcliffe, T.L. and A. Robertson. Code Warriors and Code-a-
Phobes: A study in attitude and pair programming. in SIGCSE. 2003.

[19] Padberg, F. and M. Muller, Analyzing the Cost and Benefit of Pair
Programming, in Proceedings of the 9th International Symposium on
Software Metrics. 2003, IEEE Computer Society. p. 166.

[20] Baheti, P., E.F. Gehringer, and P.D. Stotts, Exploring the Efficacy of
Distributed Pair Programming in XP/Agile Universe 2002 p. 208-220

[21] Wolf, T., T. Nguyen, and D. Damian, Does distance still matter?
Softw. Process 2008 13 (6): p. 493-510

[22] Begel, A. and B. Simon. Novice software developers, all over again.
in International Computing Education Research Workshop. 2008.

[23] Tang, A., et al. Collaborative Coupling over Tabletop Displays. in
CHI. 2006.

